

Cardiac mortality after revascularization in light of the ISCHEMIA trial

Prof. Eliano P. Navarese

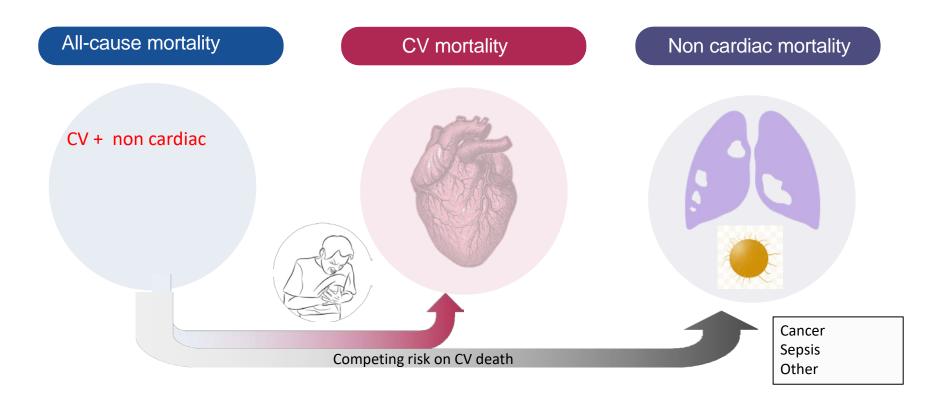
MD, PhD, FESC, FACC

Associate professor, Head Clinical and Experimental Cardiology Department of Clinical Interventional Cardiology, University of Sassari, Sardinia island, Italy

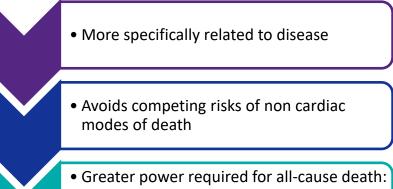
UNIVERSITÀ DEGLI STUDI DI SASSARI

Disclosures

Research grants from Abbott, Amgen, outside the submitted work.


• Lecture fees/honoraria from Amgen, Astra-Zeneca, Bayer, Pfizer and Sanofi-Regeneron, KYE Pharmaceuticals.

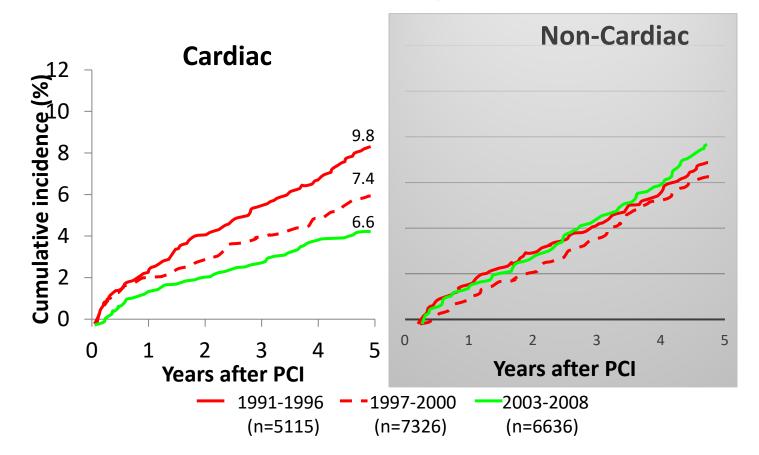
Determinants of the clinical effect with revascularization on a global scale



Risk multipliers: anatomic ischemic burden and degree of ischemia

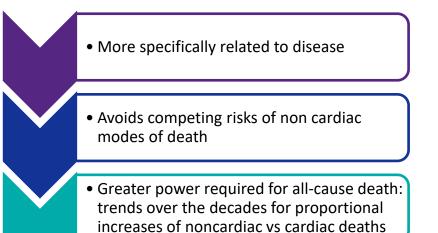
Breakdown of Mortality as trial endpoint

Cardiac mortality endpoint in CV revasc trials and meta-analyses



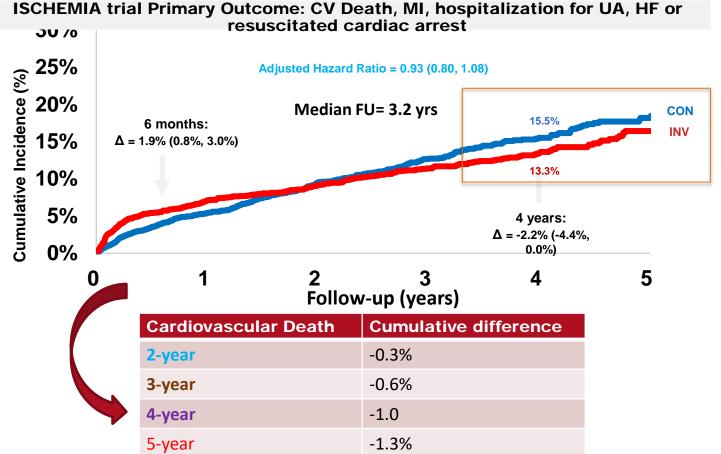
trends over the decades for proportional increases of noncardiac vs cardiac deaths

Navarese. Eur Heart J. 2021 Dec 1;42(45):4699-4700


Trial	Treatment	Endpoint
ISIS 2	Aspirin/streptokinase vs. placebo	Vascular death
CURE	Clopidogrel vs. placebo	Cardiovascular death, nonfatal MI, or stroke
PLATO	Ticagrelor vs. clopidogrel	Death from vascular causes, MI, or stroke
ISCHEMIA	Revascularization vs. conservative strategy	Cardiovascular death, Ml, hospitalization for unstable angina, heart failure, or resuscitated cardiac arrest

Trends in cause of death following PCI

Spoon et al. Circ 2014;129:1286-1294


Cardiac mortality endpoint in CV revasc trials and meta-analyses

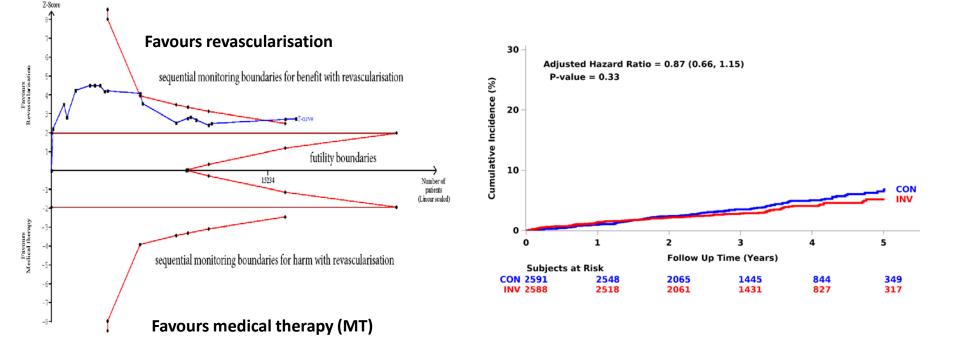
Navarese. Eur Heart J. 2021 Dec 1;42(45):4699-4700

Trial	Treatment	Endpoint
ISIS 2	Aspirin/streptokinase vs. placebo	Vascular death
CURE	Clopidogrel vs. placebo	Cardiovascular death, nonfatal MI, or stroke
PLATO	Ticagrelor vs. clopidogrel	Death from vascular causes, MI, or stroke
ISCHEMIA	Revascularization vs. conservative strategy	Cardiovascular death, MI, hospitalization for unstable angina, heart failure, or resuscitated cardiac arrest

White. Eur Heart J. 2021 Dec 1;42(45):4697-4698.

Maron N Engl J Med. 2020;382:1395-1407.

Adequate power for mortality as individual endpoint

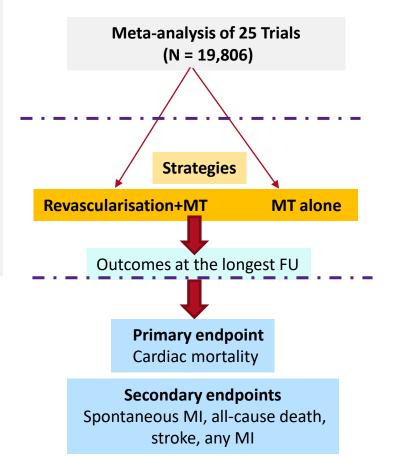


15.000 pts required to address cardiac mortality on Trial Sequential Analysis

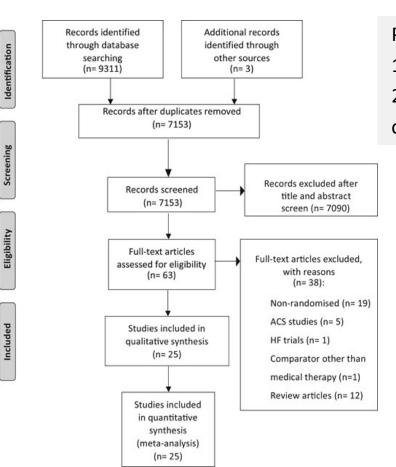
Cumulative

Maron N Engl J Med. 2020;382:1395-1407.

ISCHEMIA trial: n= 5.179


Revasc+MT vs MT in clinically stable patients: Study design

Methods


- Rates rather than crude number of events because they incorporate trial duration
- Heterogeneity assessed by *I*² statistic
- Random-effects model (primary model)
 - Trial sequential analysis with sequential monitoring boundaries (benefit/futility)
- Sensitivity analysis without ACS, CTO, CABG
- Meta-regressions for the impact of follow-up duration, trial medications, absolute differences for MI on cardiac death

Inclusion Criteria

- Clinically stable CAD pts undergoing elective revascularization (planned, deferrable, non urgent/non emergent) plus medical therapy (MT) or medical therapy alone
- Clinical stability defined by absence of symptoms or signs of ischaemia at rest
 Navarese. Eur Heart J. 2021;42:4699-4700.

Updated Systematic search

Post-ACS studies additional criteria:

 absence of symptoms or signs of ischaemia at rest.
 by protocol a myocardial stress test as an additional criterion of clinical stability.

Revasc+MT vs MT alone in stable patients: Primary endpoint

Study	Revascularis Events		Events	MT alone P-Y	Cardiac	mortality	RR	95%-CI	Weight	
Mathur (1979)	8	308.00		330.00		<u> </u>	0.71	[0.29; 1.75]	3.0%	
ECSS (1988)	46	4728.00	76	4476.00	-		0.57	[0.40; 0.83]	11.7%	
AVERT (1999)	1	265.50	1	246.00	<u> </u>		→ 0.93	[0.06; 14.81]	0.3%	
MASS-1 (1999)	6	710.00	2	360.00		•	- 1.52	[0.31; 7.54]	1.0%	
RITA-2 (2003)	13	3528.00	22	3598.00		_	0.60	[0.30; 1.20]	4.8%	
TIME (2004)	32	612.00	34	592.00			0.91	[0.56; 1.48]	8.2%	
INSPIRE (2006)	1	104.00	2	101.00	< + ·		0.49	[0.04; 5.36]	0.5%	
COURAGE (2007) 23	5285.40	25	5234.80			0.91	[0.52; 1.61]	6.5%	
SWISSI-2 (2007)	3	979.20	22	1071.00	← #		0.15	[0.04; 0.50]	1.7%	
JSAP (2008)	2	633.60	3	633.60	•		0.67	[0.11; 3.99]	0.8%	
BARI 2D (2009)	72	5880.00	64	5960.00	-	+	1.14	[0.81; 1.60]	12.9%	
MASS-2 (2010)	51	4080.00	42	2030.00			0.60	[0.40; 0.91]	10.2%	
DEFER (2015)	4	1350.00	5	1365.00			0.81	[0.22; 3.01]	1.5%	
ORBITA (2017)	0	11.55	0	10.45	<+		→ 0.90	[0.02; 45.60]	0.2%	
REVASC (2018)	0	101.00	2	104.00	< +		0.21	[0.01; 4.29]	0.3%	24
EURO-CTO (201	8) 7	777.00	2	411.00		•	— 1.85	[0.38; 8.91]	1.1%	21
FAME-2 (2018)	11	2252.88	7	2222.64			1.55	[0.60; 4.00]	2.7%	ree
DECISION-CTO	(2019) 8	1668.00	14	1592.00		—	0.55	[0.23; 1.30]	3.2%	160
ISCHEMIA (2020)	92	8281.60	111	8291.20		-	0.83	[0.63; 1.09]	15.6%	+ N
ISCHEMIA-CKD	(2020) 76	853.60	82	855.80		+	0.93	[0.68; 1.27]	13.9%	
										5.7
Random-effects		42409.33	528	39484.49			0.79	[0.67; 0.93]	100.0%	
Heterogeneity: I ² =	,						I			
Test for overall effect	ct: z = −2.76 (p <	0.01)		0.		125	10			
			Favo	urs Revasc	ularisation+MT	Favours MT	alone			

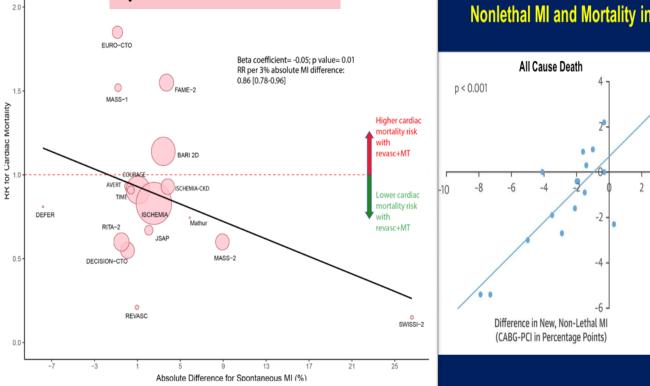
21% cardiac death risk reduction with revasc + MT vs MT alone at 5.7 yrs

Secondary endpoint: Spontaneous MI

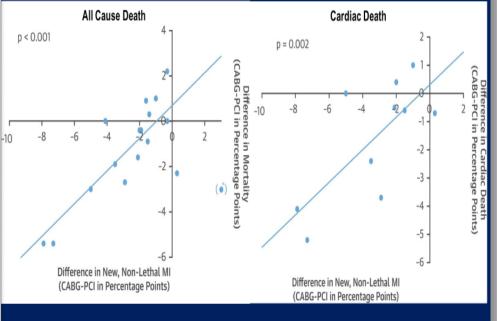
Study	Revascularis Events		Events	MT alone P-Y	Spontaneous MI	RR	95%-CI	Weight	
Mathur (1979) ACIP (1997) ACME-1 (1997) ACME-2 (1997) AVERT (1999) MASS-1 (1999) RITA-2 (2003) TIME (2004) COURAGE (2007) SWISSI-2 (2007)	9 7 10 5 5 7 25 20 108 11	308.00 384.00 575.00 255.00 265.50 710.00 3528.00 612.00 5285.40 979.20	13 18 8 5 4 3 23 21 119 40	330.00 732.00 560.00 250.00 246.00 360.00 3598.00 592.00 5234.80 1071.00		0.74 0.74 1.22 0.98 1.16 1.18 1.11 0.92 0.90 0.30	[0.32; 1.74] [0.31; 1.77] [0.48; 3.08] [0.28; 3.39] [0.31; 4.31] [0.31; 4.58] [0.63; 1.95] [0.50; 1.70] [0.69; 1.17] [0.15; 0.59]	2.6% 2.5% 2.2% 1.3% 1.2% 1.1% 5.3% 4.6% 14.7% 4.0%	
JSAP (2008) BARI 2D (2009) MASS-2 (2010) DEFER (2015) REVASC (2018) EURO-CTO (2018) FAME-2 (2018) DECISION-CTO (2 ISCHEMIA (2020) ISCHEMIA-CKD (2	29 2019) 7 130	633.60 5880.00 4080.00 1350.00 101.00 777.00 2235.00 1668.00 8281.60 853.60	138 42 2 1 2 45 7 196	633.60 5960.00 2030.00 1365.00 104.00 < 411.00 2205.00 1592.00 8291.20 855.80		$\begin{array}{c} 0.71 \\ 0.57 \\ \hline 0.34 \\ \hline 1.59 \\ 0.64 \\ 0.95 \\ 0.66 \end{array}$	$\begin{bmatrix} 0.11; & 1.66 \\ [0.54; & 0.91] \\ [0.38; & 0.86] \\ [0.98; & 21.06] \\ [0.01; & 8.43] \\ [0.32; & 7.86] \\ [0.40; & 1.01] \\ [0.33; & 2.72] \\ [0.53; & 0.83] \\ [0.47; & 1.09] \end{bmatrix}$	14.7% 8.5% 0.9% 0.2% 0.8% 7.2% 1.8% 17.0%	26% spontaneous MI risk reduction with revasc + MT vs MT alone
Random-effects n Heterogeneity: $I^2 = 2$ Test for overall effect	$21\%, \tau^2 = 0.0192$			36421.40 Γ 0.΄ urs Revascu	• 1 0.2 0.5 1 2 5 Ilarisation+MT Favours M	5 10	[0.64; 0.86]	100.0%	

Benefits of revascularisation: overall and in prespecified subgroups

Sensitivity analyses excluding studies


After ISCHEMIA exclusion (~ 1.3 ARD at 5 yrs): RR 0.78 [0.65; 0.95]

	Cardiac mortality		
Study		RR	95%-CI
Study Omitting AVERT Omitting BARI 2D Omitting COURAGE Omitting DECISION-CTO Omitting DECISION-CTO Omitting ECSS Omitting EURO-CTO Omitting FAME-2 Omitting INSPIRE Omitting ISCHEMIA-CKD Omitting ISCHEMIA-CKD Omitting JSAP Omitting MASS-1 Omitting MASS-1 Omitting MASS-2 Omitting MASS-2 Omitting MASS-2 Omitting RITA-2 Omitting RITA-2 Omitting SVIISSI-2 Omitting TIME		0.79 0.76 0.78 0.79 0.84 0.79 0.79 0.79 0.79 0.79 0.79 0.82 0.79 0.82 0.79 0.80 0.80 0.80 0.82	95% -Cl [0.67; 0.94] [0.65; 0.88] [0.66; 0.94] [0.67; 0.94] [0.67; 0.93] [0.67; 0.93] [0.67; 0.93] [0.65; 0.92] [0.67; 0.94] [0.67; 0.94] [0.67; 0.93] [0.67; 0.93] [0.67; 0.94] [0.67; 0.94] [0.67; 0.94] [0.67; 0.94] [0.68; 0.95] [0.72; 0.94] [0.65; 0.93]
Random-effects model	0.75 1	0.79 1.5	[0.67; 0.93]
	0.70	1.0	


Favours Revascularisation Favours Medical Therapy alone

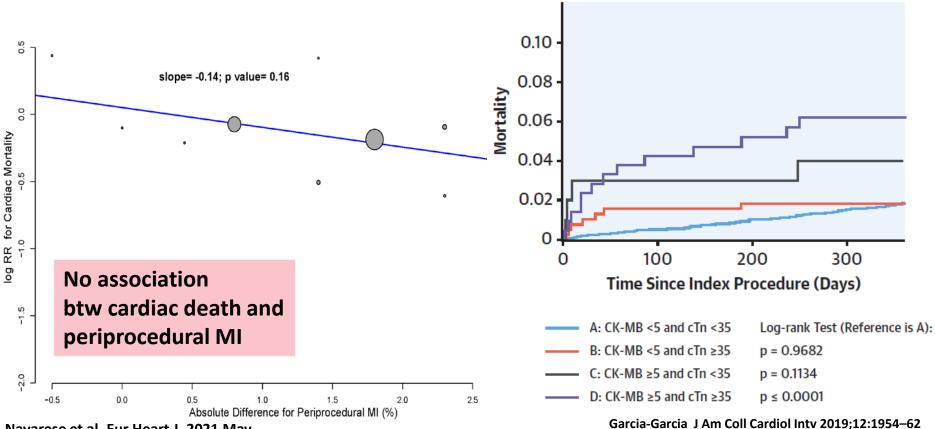
Lower spontaneous MI with revasc ≈ lower cardiac death

Significant association btw cardiac death and spontaneous MI

Nonlethal MI and Mortality in PCI Versus CABG Randomized Trials

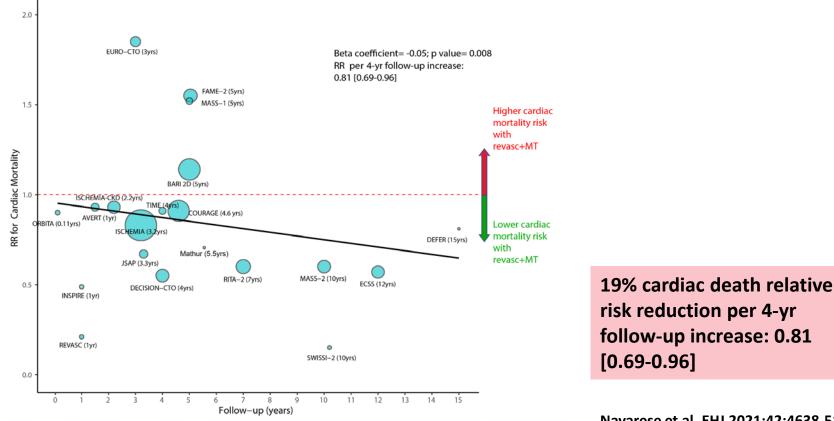


Doenst et al. JACC 2019;73:964-976

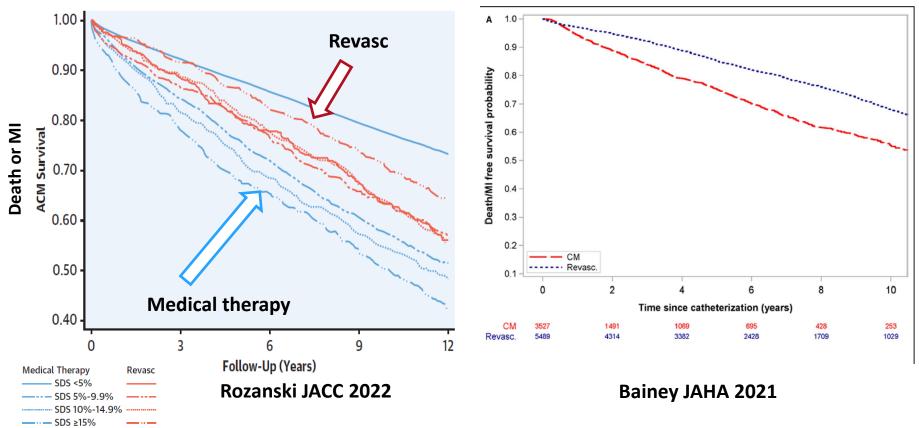

Procedural MI Type 4a or 5 MI

Spontaneous MI: types 1, 2, 4b, or 4c

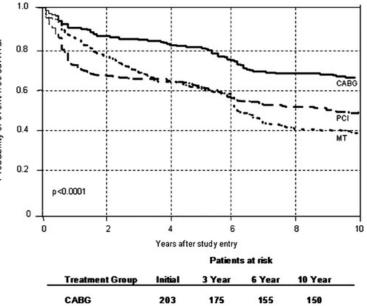
Maron N Engl J Med. 2020;382:1395-1407.



Impact of periprocedural MI on mortality


Navarese et al. Eur Heart J. 2021 Mav

Cardiac death and length of follow-up



Navarese et al. EHJ 2021;42:4638-51

Consistent lower mortality or MI at long term (10 yrs) in large-scale observational studies

Outcomes at 10 year F/U in the MASS-2 RCT

205

203

147

140

130

121

108

93

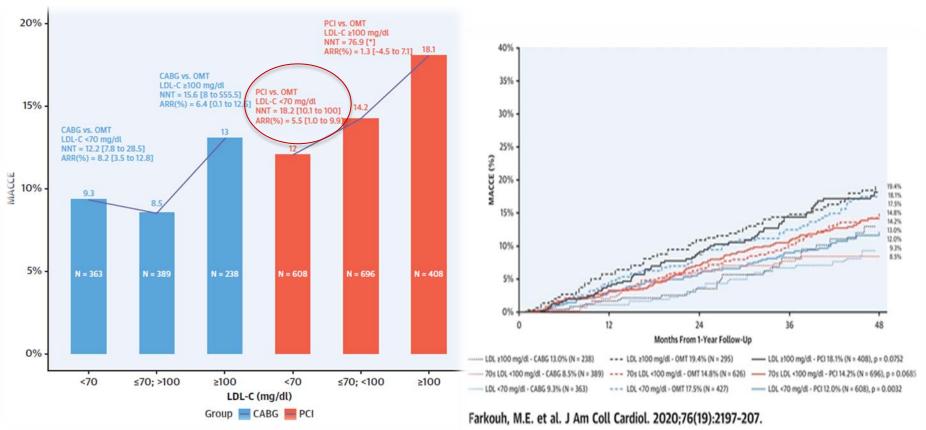
	PCI	CABG	MT	Р
Primary endpoint	42.4	33	59.1	<0.001
All-cause death	24.1	51.1	31	0.08
Cardiac death	14.3	10.8	20.7	0.01

Question 2:

Does the suboptimal therapy in older studies favor revasc?

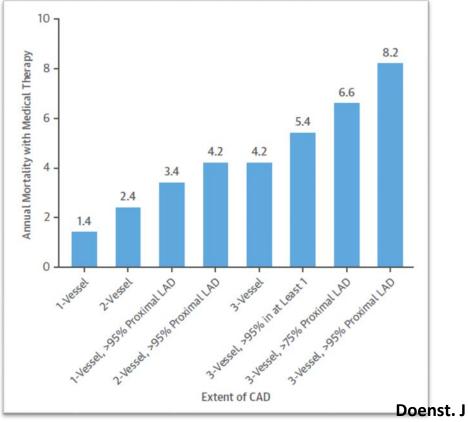
Hueb. Circulation. 2010 Sep 7;122(10):949-57

PCI


MT

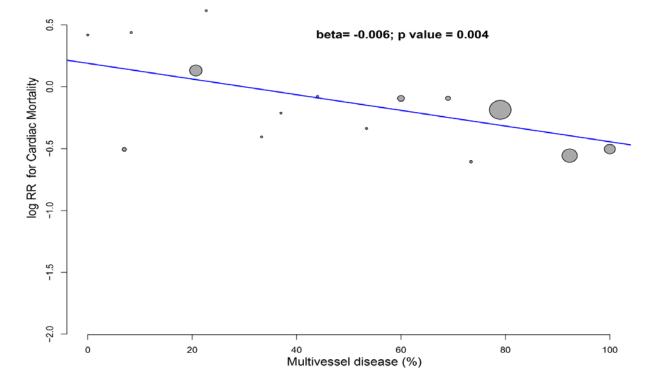
Answer to question 2

Variable Antithrombotic agents Statins	Beta - 0.01 0.001	P value 0.27 0.71	No significant association btw effects of strategy on cardiac death and - medical therapy - study year	 Balanced MT in both arms in each RCT (strength of RCTs) No effect of trial chronology
Beta-blockers	- 0.001	0.91	Balanced Rando	omization
ACE inhibitors/ARBs	0.005	0.11	Invasive strategy + MT vs I	MT alone
Study year	0.01	0.16		


Sinergy between revascularisation+MT

MACCE with PCI and CABG based on LDL-C thresholds in DM: pooled analysis

Navarese et al. J Am Coll Cardiol 2020;76:2208–11


Annual mortality risk as a function of the severity of coronary artery disease (CAD)

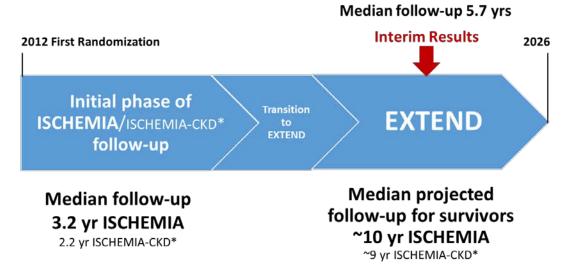
Doenst. J Am Coll Cardiol. 2019;73:964–76.

Risk multiplier

Meta-regression of cardiac death in relation to % of MV disease

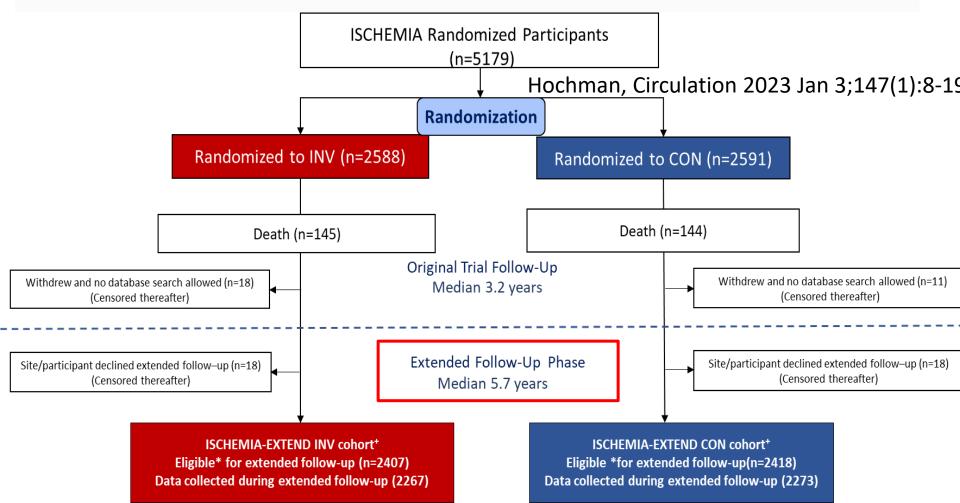
Outcomes for INV-CR versus CON: Primary endpoint

Anatomic CR achieved

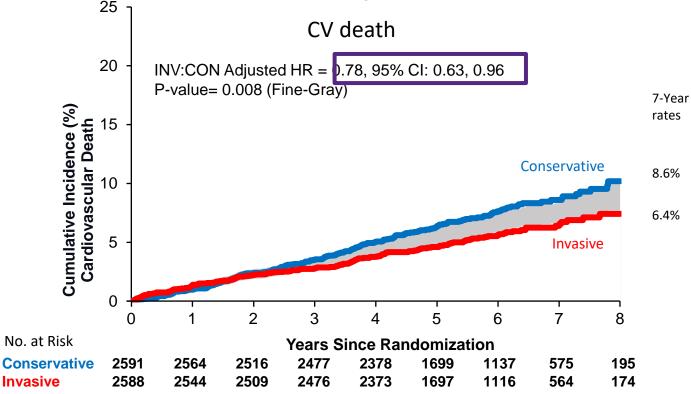

Years from randomization

Stone GW - ACC 2021

Reynolds . Circulation. 2022 Jun 7;145(23):e1072. doi:

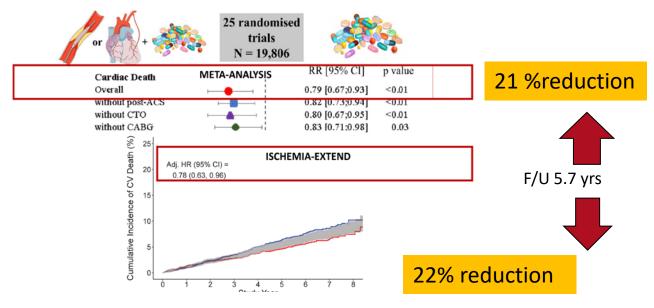

Long-term follow-up in ISCHEMIA-EXTEND

Hochman, Circulation 2023 Jan 3;147(1):8-19.

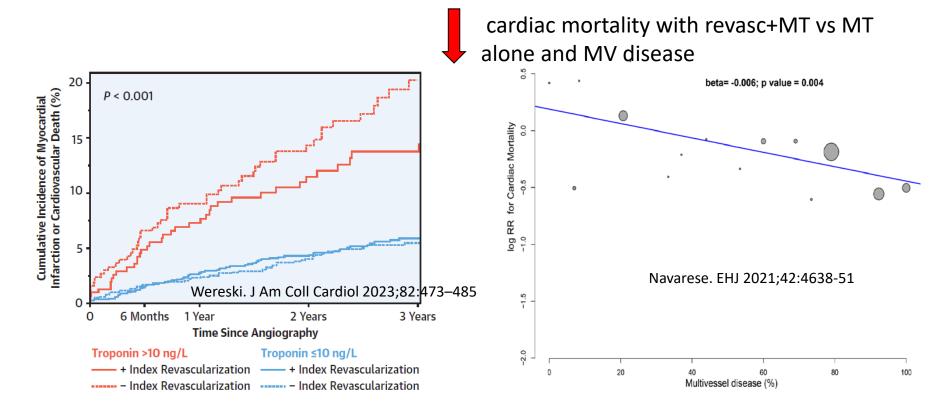


ISCHEMIA-EXTEND was designed as a pragmatic long-term follow-up study of mortality

Participant Flow for Long-Term Follow-Up in ISCHEMIA-EXTEND


Extended follow-up - 5.7 years median *Cumulative incidence of cardiovascular death*

Hochman, Circulation 2023 Jan 3;147(1):8-19.


A meta-analysis showed a significant cardiac mortality reduction in CCS with revascularization+ medical therapy (MT) vs MT alone. These findings have been confirmed in the ISCHEMIA-EXTEND study.

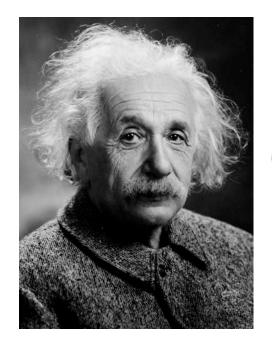
Navarese, Eur Heart J. 2021 ;42(45):4638-4651.

Hochman, Circulation 2023 Jan 3;147(1):8-19.

Cardiac mortality reduction multipliers

Final remarks

Clear benefits of revascularization vs. OMT alone are a function of:


- The synergy of revasc and optimal MT strategies that *patient vulnerability*
- Appropriate endpoint selection: Cardiac mortality-more specific than all-cause death- to avoid competing risks that dilute benefits, driven by spontaneous MI vs no impact of small procedural MIs.
- Length of follow-up(>4.5 yrs) to allow for event lover time and event accrual in the untreated group. Every 4 years, a 19% reduction of cardiac death events may be expected with revasc.
- Significantly CV mortality and spontaneous MI events expected on a global scale with large numbers (N > 15000 for CV mortality) of individuals treated
- Extent, severity and ischemic impact of CAD, and the likelihood of achieving complete revascularisation increase the chance of improved outcomes.

Contact: elianonavarese@gmail.com; Twitter: @ElianoNavarese

E(expected CV death reduction from revasc) =M(MV disease)C(cycle of life-FU)²

Contacts: <u>elianonavarese@gmail.com</u> Twitter: @ElianoNavarese

If your patient has longer life expectation, risk multipliers such as multivessel disease, revascularization will likely reduce cardiac mortality at FU. Be patient and you will observe the effect.